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Abstract

Squeezing of a droplet between a pair of plates serves as an experimental method for probing the dy-
namics of moving contact lines (CL). It is also indicative of a possible interplay between inner-scale effects
and the bulk flow hydrodynamics. In this paper strong squeezing of a two-dimensional liquid droplet
between parallel plates moving against each other is studied in the inertialess approximation. It is shown
that the dynamics of the moving CL is mainly governed by the macroscopic bulk flow, whereas molecular
slip and wetting in the vicinity of the CL have a minor effect. As a result, the apparent contact angle
continuously increases, and after some time rolling motion inevitably sets in. After a longer time, the shape
of the free surface tends to become close to circular, albeit distinct from a circle. This is because at the late
stage of squeezing, the shape of the free surface is determined mainly by the viscous stresses, which
dominate capillary stresses due to the surface tension. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Squeezing flow between parallel plates is encountered in many technical applications. Squeezing
of a liquid droplet between a pair of plates is one of the simplest experimental methods for the
investigation of the motion of contact lines (CL) (Dussan, 1979). Under sufficiently strong
squeezing an interplay of two effects is expected in this case, where the hydrodynamic outer-scale
bulk flow coexists with the molecular phenomena characteristic of the inner scale near the
CL. Existing experimental data do not allow the indentification of any inner-scale mecha-
nism whose nature remains a matter of speculation. According to Somalinga and Bose (2000)
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‘‘. . . measurements made at an outer length scale cannot be used to uniquely delineate inner-scale
physics because of inherent difficulties associated with probing inner length scale physics exper-
imentally . . .’’. It is widely accepted that the inner-scale physics is quite complex. Both purely
hydrodynamic (Cox, 1986) and molecular-kinetic local effects (Blake, 1993) are responsible for the
CL motion, and it is probable that both mechanisms contribute. At sufficiently low bulk velocities
the approaches of Cox (1986) and Blake (1993) describe the CL motion accurately (Hayes and
Ralston, 1993), whereas at higher velocities their predictions deviate from the empirical Hoffman’s
law (Hoffman, 1975). The deviation, however, concerns the bulk flow effects.

In Laun et al. (1999), creeping flow in a narrow gap between parallel plates moving against each
other was investigated. A partial wall-slip model was applied, and a simple analytical solution was
derived based on it. The dependence of the external force needed for squeezing on the squeezing
rate and the spacing of the plates, was deduced. The effect of the surface tension acting at the free
liquid surface was not accounted for, and CL motion was not considered in detail.

In the present work, the capillary effects at the free liquid surface in the gap are incorporated.
The time evolution of the free surface and the CL motion are considered in detail. The squeezing
is assumed to be so strong that rolling motion occurs near the moving CL. It is also shown that, at
the remote stage of squeezing, the shape of the free surface is determined mainly by the viscous
stresses which dominate those related to the surface tension.

The problem of droplet squeezing between two plates is relevant in the context of drop impact/
spreading on a horizontal or an inclined plane wall (Yarin and Weiss, 1995; Weiss and Yarin,
1999; Rioboo et al., 2001 and references therein), as well as in the alignment of matched com-
ponents during the assembly process in optoelectronics and MEMS (Harsh et al., 1999; Patra
et al., 1995). It is also relevant to stability of liquid bridges supported by two disks in the situation
of interest for material processing in floating zones (Babsky et al., 1987; Bezdenejnykh et al., 1999;
Zayas et al., 2000).

In Section 2, the problem of droplet squeezing between two walls is posed. A numerical al-
gorithm is briefly described in Section 3. The results are discussed in Section 4, and conclusions
are drawn in Section 5.

2. Formulation of the problem

Consider a two-dimensional droplet of an incompressible viscous liquid placed between parallel
plates. The initial shape of the droplet surface is given by two circular arcs with the apparent
contact angles between the tangents to the droplet surface and the plates equal to a stationary
value as. The initial length of the droplet along the plates is 2l0 and the initial height is 2h0 (Fig. 1).
If the plates move against each other with a constant velocity 2V, the liquid spreads in the hor-
izontal direction. We shall investigate the evolution of the free surface of the droplet. To estimate
the characteristic Reynolds number for this problem, we take the liquid density q ¼ 10 g/cm3, the
viscosity l ¼ 10 g/cm s, the half-gap h0 ¼ 0:1 cm and the squeeze velocity V ¼ 1 cm/s. Then the
Reynolds number is

Re ¼ qVh0
l

� 0:1: ð1Þ
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In addition, if we take as the characteristic time scale T ¼ h0=V , then the ratio of the non-sta-
tionary term in the Navier–Stokes equation to the viscous one, c ¼ qh20=ðlT Þ, is of the same order
as Re, which means that c � 0:1. With the inertial effects neglected, the problem may be con-
sidered in the framework of the creeping-flow Stokes equations

rp ¼ lDu; ð2Þ
r � u ¼ 0; ð3Þ

where u ¼ ðux; uyÞ is the velocity vector, ux and uy being the velocity components in the x- and y-
directions, and p the pressure, and the gravity effects are neglected. In terms of the stress tensor,
the equations of motion (2) and (3) reduce to

oPik

oxk
¼ 0; ð4Þ

where

Pik ¼ �pdik þ l
oui
oxk

�
þ ouk

oxi

�
: ð5Þ

Squeezing takes place in the time interval 06 t < h0=V , until the plates come into contact. The
model would cease to apply even earlier if the transient Reynolds number RetðtÞ ¼ qVhðtÞ=l ex-
ceeds 1, but the results discussed in Section 4 show that this is impossible.

We also neglect gravity effects, which assumes that the liquid flow is symmetric about the axes
of coordinates. For this reason, we need to consider only the quadrant bounded by the axes x ¼ 0
and y ¼ 0, as well as by the upper plate and the free surface. The boundary conditions on the
upper plate are

ux ¼ 0; uy ¼
dh
dt

¼ �V ; at y ¼ hðtÞ; 06 x6 aðtÞ; ð6Þ

where V is the absolute velocity of the upper plate relative to the fixed y-axis (cf. Fig. 1), h is the
instantaneous half-gap between the plates, and a the horizontal coordinate of the CL. These

Fig. 1. Scheme of squeezing flow between two parallel plates.
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conditions do not apply at the CL, in the vicinity of which the continuous approach fails. It is well
known that a non-integrable force singularity occurs at the CL if no-slip conditions (6) are as-
sumed (Dussan and Davis, 1974). To avoid this singularity, the Navier–Maxwell slip boundary
condition

ux � k
oux
oy

¼ 0; y ¼ hðtÞ; at x close to aðtÞ ð7Þ

can be applied instead of (6). Here k is a molecular slip coefficient, which is small relative to the
characteristic macroscopic length scale of the problem, say h0. Its dimensionless counterpart
k ¼ k=h0 	 1. The following law of CL motion was deduced (Cox, 1986)

lU
r

¼ � GðaÞf � GðasÞg þOð�2Þ; ð8Þ

where

GðaÞ ¼
Z a

0

t � sinðtÞ cosðtÞ
2 sinðtÞ dt; ð9Þ

� ¼ � 1

ln k
	 1: ð10Þ

Here U ¼ da=dt is the velocity of the CL, r is the surface tension, a is the apparent contact angle,
and as its equilibrium/static value. The slip coefficient k, as well as the parameter � based on it,
reflect molecular processes in the vicinity of the moving CL. The apparent angle a can, however,
be affected by the hydrodynamics of the overall squeezing flow in the bulk, which should be found
as a solution of the problem. The way the macroscopic flow affects propagation of the CL pre-
dicted via (8), is the main question of the present work.

Incorporation of such effects as the London-van der Waals forces in the vicinity of the CL
results in a law for the CL motion similar to (8), with the slip coefficient k and the constant �
determined by these forces. We shall consider (8) as the boundary condition at the CL. It will be
shown in Section 4 that this condition can only be used for the initial stage of the process, and it
will be discussed there again for the cases when rolling motion sets in at the CL.

Using the symmetry of the solution about the axes of coordinates, we obtain the following
boundary conditions:

uy ¼ 0;
oux
oy

¼ 0; y ¼ 0; ð11Þ

ux ¼ 0;
ouy
ox

¼ 0; x ¼ 0: ð12Þ

Note that the second of conditions in (11) and (12) can be rewritten in the form

fx ¼ 0; y ¼ 0; ð13Þ
fy ¼ 0; x ¼ 0; ð14Þ

where

fi ¼ Piknk; i; k ¼ x; yf g ð15Þ
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are the stress components, n is a unit normal vector to an appropriate surface.
The dynamic boundary conditions at the free surface are given by

f � s ¼ 0; ð16Þ
f � n ¼ rj; ð17Þ

where s and n are the unit tangent and normal vectors at the free surface, and j is the curvature of
the free surface.

Eqs. (16) and (17) reflect the fact that the shear stress at the free surface vanishes whereas the
normal stress exhibits a jump due to the Laplace pressure. The kinematic boundary condition at
the free surface reads

dr

dt
¼ uðr; tÞ; ð18Þ

where r is the radius vector of a material point of the surface. The initial values of r are given on
the circular arcs,

rð0Þ ¼ r0; ð19Þ
where rð0Þ is the initial position of the surface point on the circular meniscus (cf. Fig. 1).

3. Numerical method of solution

In the governing equations, time is rendered dimensionless by lh0=r, the coordinates by h0, the
velocity components by r=l, the pressure and stresses by r=h0, the half-gap between the plates by
h0, and the curvature of the free surface by 1=h0.

Eq. (18) can be integrated numerically using the Kutta–Merson method, provided the surface
velocity is known at any given moment of time. The latter is found from the Stokes Eqs. (2) and
(3) with the boundary conditions (6), (11) and (12) (or, equivalently, (13)–(15)), (16) and (17). The
problem can be solved numerically using the boundary element method (BEM), successfully
applied in the past to various elastostatic (Becker, 1992) and hydrodynamic problems at low
Reynolds numbers (Pozrikidis, 1992, van de Vorst, 1994, Kelmanson, 1983). Its implementation
in the present case is similar to those of the above. We can find the unknown velocity (stress)
components on that part of the boundary where the corresponding stress (velocity) components
are known. The additional condition at the moving CL was implemented using (8), which in
dimensionless form reads

uxða; hÞ ¼ � GðaÞð � GðasÞÞ: ð20Þ
This condition yields the value of the slip velocity at the CL as it moves along the plates during
squeezing. The apparent contact angle a is calculated as

a ¼
arctan

of
ox x¼aj

� �
; if

of
ox x¼aj > 0;

p þ arctan
of
ox

jx¼a

� �
; if

of
ox

jx¼a < 0;

8>><
>>:

ð21Þ
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where the function fðxÞ gives the surface shape. Since the surface shape is affected by the bulk flow
due to squeezing, the velocity of the CL is also affected by the bulk flow via Eqs. (20) and (21).

The contribution of the singular part of the stresses is of order lU=r (where r is the distance
from the CL (Moffatt, 1964)) and concentrated in the vicinity of the CL (in a region of size �h0). It
cannot influence the flow far from the CL. The bulk flow forced by the squeezing determines the
apparent contact angle, hence the velocity of the CL. Therefore, to solve the problem in the bulk
we do not need any model dealing with the stress singularity.

High accuracy of the calculations was achieved through fine resolution of the boundary near
the CL, and using a non-uniform boundary grid with small elements. With the velocity at the free
surface found using BEM, Eq. (18) is integrated, yielding a step in the time evolution of the
boundary.

4. Results and discussion

The results will be discussed using two dimensionless groups: the one based on the plate ve-
locity, V ¼ lV =r, and the transient one CatðtÞ ¼ lðda=dtÞ=r, which is the transient capillary
number based on the velocity of the CL. The time evolution of the free surface of a liquid is il-
lustrated in Figs. 2 and 3 for V ¼ 2:5 and 5 respectively, with l0=h0 ¼ 2. The initial apparent
contact angle and stationary contact angle were taken as as ¼ p=3. The upper plate moves
downwards from y ¼ 1, and the free surface (which initially met the upper plate at x ¼ 2, y ¼ 1)
meets it at x > 2 and y < 1.

The initial stage of the squeezing process for V ¼ 0:05� 2:5 is shown in Figs. 4–6 in detail.
From these figures, we see that at the initial stage the originally concave free surface evolves into a
convex one. The apparent contact angle increases gradually and approaches p at some moment of
time which represents the onset of rolling motion. The reason for this is that the wetting rate of the
CL (predicted by (8) and determined by the molecular processes at a short distance from it, of
the order of �h0) is much lower than the squeezing rate. The flow velocity in the x-direction over
the free surface is much higher than the molecular slip at the CL, which leads to a continual
increase of the apparent contact angle. This enables us to conclude that under sufficiently strong
squeezing, the evolution of the angle is strongly affected by the bulk flow which overbears the
molecular effects and rolling motion inevitably sets in.

The transient Reynolds number can be estimated using the analytical solution in the bulk of the
liquid (Eq. (24)). The ratio of the inertial to viscous terms in the Navier–Stokes equation yields
Ret � qVhðtÞ=l. Then as hðtÞ decreases with time, the transient Reynolds number also decreases
and the inertialess approximation is correct at t > 0 if it was correct at t ¼ 0. The values of the
transient capillary number Cat corresponding to Figs. 2–6 are shown in Fig. 7. It is seen that Cat
increases with time. The sharp jump on all curves corresponds to the transition to rolling motion
at the CL.

For small values of V the transient capillary number Cat in the calculations was sufficiently
small, and the surface tension dominated the balance of the normal stresses. As a result, the shape
of the free surface is almost circular as per Fig. 4. For larger V , the circular approximation of the
free surface during its evolution becomes poor (Figs. 5 and 6), since the viscous stresses become
comparable to the surface tension effects.
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The numerical calculations show that the nodes at the free surface near the CL move towards
the plate, to which they should reach when the apparent contact angle reached p. The velocity of
the CL during the rolling motion is independent of the molecular processes and is mainly gov-
erned by the squeezing rate. Therefore, after the value of a has reached p, one can disregard the
molecular wetting processes near the CL and impose as a boundary condition over the whole plate

ux ¼ 0; uy ¼ �V ; at y ¼ h; 06 x6 a: ð22Þ

The stress singularity at the CL is absent in this case (Dussan and Davis, 1974).
To describe numerically the evolution of the free surface at the rolling stage, node redistribution

is carried out at each time step. When at some moment of time some of the nodes of the free
surface near the CL stick to the plate, they should be excluded from consideration and a new CL
position determined as the intersection between the surface and the plate. After that, new nodes

Fig. 2. Evolution of the free surface for V ¼ 2:5; l0=h0 ¼ 2: The initial apparent contact angle a ¼ p=3. Curve 1 cor-

responds to t ¼ 0, (2) t ¼ 0:015, (3) t ¼ 0:03, (4) t ¼ 0:04, (5) t ¼ 0:045, (6) t ¼ 0:069, (7) t ¼ 0:094, (8) t ¼ 0:12, (9)
t ¼ 0:15, (10) t ¼ 0:17, (11) t ¼ 0:18, (12) t ¼ 0:195, (13) t ¼ 0:207, (14) t ¼ 0:217, (15) t ¼ 0:226, (16) t ¼ 0:234.
(a) Plotted using x, y coordinates, (b) plotted using x, y=hðtÞ coordinates.
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are set on the free surface with fine resolution near the new position of the CL (which is essential
for accurate description of rolling), and the next time step is carried out.

At the late stage of squeezing as a=h becomes much larger than 1, the free surface does not
affect the flow far from it. The flow in the bulk is accurately represented by the stream function
(Laun et al., 1999)

W0 ¼
3

2
Vx z
�

� z3

3

�
; z ¼ y

h
; ð23Þ

and

ux0 ¼
3

2
V
x
h

1
�

� z2
	
; uy0 ¼ � 3

2
V z
�

� 1

3
z3
�
: ð24Þ

Fig. 3. Evolution of the free surface for V ¼ 5; l0=h0 ¼ 2: The initial apparent contact angle a ¼ p=3. Curve 1 cor-

responds to t ¼ 0, (2) t ¼ 0:005, (3) t ¼ 0:01, (4) t ¼ 0:015, (5) t ¼ 0:02, (6) t ¼ 0:025, (7) t ¼ 0:048, (8) t ¼ 0:062, (9)
t ¼ 0:074, (10) t ¼ 0:084, (11) t ¼ 0:091, (12) t ¼ 0:097, (13) t ¼ 0:1, (14) t ¼ 0:107, (15) t ¼ 0:11, (16) t ¼ 0:115.
(a) Plotted using x, y coordinates, (b) plotted using x, y=hðtÞ coordinates.
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At the late stage the ratio ux0=uy0 in the bulk is of the order of a=h  1, therefore the bulk flow
actually resembles Poiseuille flow in a channel.

The order of the viscous shear stresses can be estimated as sxy ’ lðda=dtÞ=h, and that of the
capillary pressure pr as pr ’ r=h. Their ratio is sxy=pr ¼ lðda=dtÞ=r ¼ Cat. At the late stage
Cat  1 (cf. Fig. 7). Therefore the surface tension becomes negligibly small compared to the
viscous forces, and can be disregarded when the leading term in the expansion of the solution in
powers of 1=Cat is sought for the late stage.

At this stage, in the leading order approximation, the bulk solution (24) can be used, say, inside
the rectangle to the left of the line ðx� aÞ=h ¼ �10, to avoid an enormous increase in the number
of boundary elements necessary to make calculations for a long strongly squeezed drop. However,
near the free surface, at jxj > a, a numerical solution is constructed using BEM. At, say,
ðx� aÞ=h ¼ �10 the numerical solution matches that of Eq. (24), whereas at the free surface, in
the leading order, satisfies the dynamic conditions of negligible (zero) stresses. Since the flow

Fig. 4. Initial stage of the evolution of the free surface for V ¼ 0:05 and l0=h0 ¼ 2. The initial apparent contact angle

a ¼ p=3. Time interval between the curves Dt ¼ 0:9 beginning from t ¼ 0. Solid curves––numerical results, dashed ones

(almost merging)––the corresponding approximation of the free surface by a circular arc. (a) Plotted using x, y co-

ordinates, (b) plotted using x, y=hðtÞ coordinates.
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velocity and the stresses are given over the whole boundary of the region between ðx� aÞ=h ¼ �10
and the free surface, the kinematic condition

un ¼
da=dt þ of=ot

1þ of=oyð Þ2
h i1=2 ð25Þ

cannot be satisfied for all shapes of the free surface x� a ¼ fðt; yÞ, but only for a specific one; un
is the normal velocity at the free surface. Moreover, since at the late stage da=dt  of=ot, the
kinematic condition reduces to

un
da=dt

¼ 1

1þ of=oyð Þ2
h i1=2 ; ð26Þ

Fig. 5. Initial stage of the evolution of the free surface for V ¼ 0:5 and l0=h0 ¼ 2. The initial apparent contact angle

a ¼ p=3. Time interval between the curves Dt ¼ 0:1 beginning from t ¼ 0. Solid curves––numerical results, dashed

ones––the corresponding approximation of the free surface by a circular arc. (a) Plotted using x, y coordinates,

(b) plotted using x, y=hðtÞ coordinates.
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Eq. (26) shows that in the leading order approximation in terms of 1=Cat, in the frame of reference
associated with the moving CL the flow in the tip ðx� aÞ=h > �10 does not depend on time (i.e.
f=h depends only on z ¼ y=h).

BEM was employed to calculate the flow, as well as to find the fully developed shape of the free
surface via iterations based on Eq. (26). The results for the leading order in 1=Cat are shown in
Fig. 8. It is seen that the shape of the free surface (curve 1) achieved at the late stage differs from a
circle (curve 2). It is emphasized that the calculated fully developed shape (curve 1 in Fig. 8)
corresponds to rolling motion with the apparent contact angle a ¼ p.

Denote x1 ¼ ðx� aÞ=h and y1 ¼ 1� y=h. The local shape of the free surface 1 in Fig. 8 as x1 ! 0
and y1 ! 0 is approximated by the scaling y1 ¼ 0:28 � x1:5281 . This result is obtained for Cat  1.
Benney and Timson (1980) calculated the local shape of the free surface near the moving CL for
the case of rolling motion. In the present notation their result is y1 ¼ const � xq1 (cf. their Eq.
(3.20)). Ngan and Dussan (1984) pointed out that the calculation of the exponent q in Benney and
Timson (1980) should be corrected. The corrected equation for q given in Ngan and Dussan

Fig. 6. Initial stage of the evolution of the free surface for V ¼ 2:5 and l0=h0 ¼ 2. The initial apparent contact angle

a ¼ p=3. Time interval between the curves Dt ¼ 0:005 beginning from t ¼ 0. Solid curves––numerical results, dashed

ones––corresponding approximation of the free surface by a circular arc. (a) Plotted using x, y coordinates, (b) plotted

using x, y=hðtÞ coordinates.
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(1984) in the present notation has the form tanðqpÞ ¼ �2Cat. The solution of this equation for
Cat  1 eliminating infinite forces at the CL is given by q tending to 3=2 from above. Therefore
the prediction of these two works is in agreement with the result of the present one. It is interesting
to note that the free surface cusps at large capillary numbers follow the same asymptotics
y1 ¼ const � x3=21 (Joseph et al., 1991; Jeong and Moffatt, 1992).

The area of the drop cross-section S is given by

S ¼ 2ahþ C � h2; ð27Þ
where

C ¼
Z 1

0

fðzÞdz; f ¼ f
h
: ð28Þ

Fig. 7. Transient capillary number versus time. Curve 1 corresponds to V ¼ 0:05 (Fig. 4), (2) V ¼ 0:5 (Fig. 5),

(3) V ¼ 2:5 (Figs. 2 and 6), (4) V ¼ 5:0 (Fig. 3).

Fig. 8. Flow in the tip near the free surface at the remote stage of squeezing. Curve 1 shows the calculated shape of the

free surface with the apparent contact angle a ¼ p, which corresponds to rolling motion. The shape is ‘‘saturated’’ in the

leading order approximation in terms of 1=Cat. It is rather close to a circle (curve 2), albeit different from it. All

the other curves show the streamlines of the flow in the frame of reference associated with the moving CL.
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For the late stage the value of the constant C is readily found using the calculated free surface
shape f.

Differentiating (27) in time, and using the constant volume condition, we find

da
dt

¼ � a
h

�
þ C

dh
dt

: ð29Þ

For the late stage a=h  C, and Eq. (29) reduces to

da
dt

¼ � a
h
dh
dt

; ð30Þ

which yields

a ¼ K
h
; ð31Þ

where K is a constant.

Fig. 9. Dependence of the coordinate of the CL x ¼ aðtÞ on time. (a) V ¼ 0:05, (b) V ¼ 2:5, (c) V ¼ 5. Solid

lines––numerical results, the dashed ones––the analytical ones, Eq. (32).
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In the dimensionless form h ¼ 1� V t. If the late stage begins at t ¼ t� < 1=V (when a ¼ a�),
which is characterized, say, by the onset of rolling motion, Eq. (31) yields

a ¼ a�
1� V t�
1� V t

: ð32Þ

The numerically obtained dependence of the x coordinate of the CL a on time is compared to the
asymptotic one from (32) in Fig. 9. The two results draw closer as t increases.

5. Conclusion

Squeezing of a two-dimensional droplet between parallel plates moving with a constant velocity
against one another represents a convenient model for the analysis of the dynamics of moving
CLs. The flow is also of significant interest in a number of applications. The initial shape of the
free surface was assumed to be circular. However, at the beginning of the squeezing process, there
is a period when the free surface deviates from circularity, while the apparent contact angle is less
than p. This effect is stronger for higher values of the dimensionless velocity V . This period is
longer for lower values of V (lower squeezing rate). Under sufficiently strong squeezing, the
overall dynamics of the CL is mainly governed by the macroscopic (squeezing) bulk flow, whereas
the molecular processes leading to slip and wetting in the vicinity of the CL have a minor effect. As
a result, the apparent contact angle gradually increases and reaches the value of p at some mo-
ment of time depending on the value of V . Then rolling motion of the CL sets in. At this stage, as
time increases, the gap between the plates becomes small relative to the length of the droplet and
the free surface tends to a steady-state fully developed shape close to a circle, albeit different
from it.
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